
Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Chapter 9: Main Memory

9.2 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Chapter 9: Memory Management

 Background

 Contiguous Memory Allocation

 Paging

 Structure of the Page Table

 Swapping

9.3 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Objectives

 To provide a detailed description of various ways of organizing memory
hardware

 To discuss various memory-management techniques,

 To provide a detailed description of the Intel Pentium, which supports
both pure segmentation and segmentation with paging

Process A Process B Process Z

The operating systems controls the hardware and coordinates its use
among the various application programs for the various user. An operating
system provides an environment for the execution of programs.

Computer hardware

Human user

Process B

Non-interactive
process with no

human user

Human userHuman user

A typical computer system

Disk
controller

USB
controller

Graphics
adapter

Memory
controller

CPU

Main memory

ready running terminated

waiting

new

Process creation
To run a program, the operating system must fetch the program executable from

disk and place the program in a new process in main memory for it to be run.

Process
memory space

Operating system must allocate a new memory
space for each new process. This memory space

is often referred to as the process memory image.

memory

Static memory allocation
address MAX

The operating system must

allocates a blob of memory for the

new process memory image.

address 0

memory

stackstack

stack

heap

data

text

Static memory allocation

The allocated memory
image is divided into the
following segments:

‣ text

‣ data

‣ heap

‣ stack

address 0

address MAX

9.11 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Background

 Program must be brought (from disk) into memory and placed
within a process for it to be run

 Memory Management

• The task of allocating main memory to the operating system and
the various user processes, in the most efficient way possible

 Main memory and registers are the only storage CPU can access
directly.

 Register access in one CPU clock (or less).

 Main memory can take many cycles.

 Cache sits between main memory and CPU registers.

Disk
controller

USB
controller

Graphics
adapter

Memory
controller

CPU

Main memory

stack

heap

data

text

stack

heap

data

text

stack

heap

data

text

stack

heap

data

text

How can the
available

memory be
allocated by
the various
processes?

Memory Management

 Contiguous Allocation
 Single Allocation

 Fixed (static) Partitioning

 Dynamic Partitioning

 Buddy Algorithm

 Page Memory Management

 Segmented Memory Management

Contiguous Memory Allocation

 Main memory usually into two partitions:

 Resident operating system, usually held in low memory with

interrupt vector

 User processes then held in high memory

 Each process contained in single contiguous section of memory

 Fixed (static) partitioning

 Available memory is partitioned into regions with fixed boundaries

 Each partition may contain exactly one process

 When a partition is free, a process is selected from the input queue and

is loaded into the free partition

Single contiguous allocation

Source: https://en.wikipedia.org/wiki/Memory_management_(operating_systems)#Single_contiguous_allocation

Single allocation is the simplest memory management technique. All

the computer's memory, usually with the exception of a small portion

reserved for the operating system, is available to the single application.

Single contiguous allocation

Source: https://en.wikipedia.org/wiki/Memory_management_(operating_systems)#Single_contiguous_allocation

‣ MS-DOS (released 1981) is an example of a system which allocates
memory in this way.

‣ An embedded system running a single application might also
use this technique.

‣ A system using single contiguous allocation may still multitask by
swapping the contents of memory to switch among users. Sometimes the
term single-tasking is used instead of multi-tasking for such systems.

★ MS-DOS (acronym for Microsoft Disk Operating System) is a operating system for

x86-based personal computers mostly developed by Microsoft and initially released

1981.

★ During its lifetime, several competing products were released for the x86 platform,

and MS-DOS went through eight versions, until development ceased in 2000.

★ MS-DOS is a single-tasking operating system.

Source: https://en.wikipedia.org/wiki/MS-DOS

A process can be swapped temporarily out of memory to a backing store, and
then brought back into memory for continued execution.

‣ Backing store – fast disk large enough to accommodate copies of all memory
images for all users; must provide direct access to these memory images.

‣ Roll out, roll in – swapping variant used for priority-based scheduling
algorithms; lower-priority process is swapped out so higher-priority process
can be loaded and executed.

‣ Major part of swap time is transfer time; total transfer time is directly
proportional to the amount of memory swapped

‣ Modified versions of swapping are found on many systems (i.e., UNIX, Linux,
and Windows).

‣ System maintains a ready queue of ready-to-run processes which have
memory images on disk.

Swapping

Fixed Partitioning

 Problems

 The degree of multiprogramming is

bound by the number of partitions

 A process bigger than the biggest

partition cannot be executed

 Internal Fragmentation

 There is enough total memory space to

satisfy a request, but the available

spaces do not belong to a single partition

Main Memory
(64 MB)

8 MB

16 MB

8 MB

24 MB

should wait

P3

(12 MB)
P0

(12 MB)

P1

(6 MB)

P2

(19 MB)

P4

(5 MB)

OS
(8 MB)

Dynamic Partitioning

 Partitions are of variable length and number
 How it works

 Initially, whole available memory is considered one large free partition

 When a process arrives, we search for a free partition large enough
for this process (how? – see next slide)

 If we find one, we allocate exactly as much memory as is needed

 When a process terminates, it releases its partition, which is then is

merged to its adjacent partitions (if any exists)

Dynamic Partitioning

 Problem
 External Fragmentation

 As processes are loaded and removed
from memory, the free memory space
is broken into little pieces

 There is enough total memory space to
satisfy a request, but the available
spaces are not contiguous

Main Memory
(64 MB)

should wait

P7

(12 MB)

P0

(12 MB)

P1

(6 MB)

P2

(19 MB)

P4

(5 MB)

OS
(8 MB)

P3

(12 MB)

P5

(10 MB)

P6

(8 MB)

4 MB

2 MB

9 MB

OS

Process 5

Process 8

Process 2

Three process
occupies all available

memory.

OS

Process 5

Hole

Process 2

Process 8 terminates
and leaves a free hole.

OS

Process 5

Process 9

Hole

Process 2

Process 9 allocates
part of the hole left
by process 8 and the
hole of free memory

shrinks.

OS

Process 5

Process 9

Process 10

Hole

Process 2

The hole of free
memory gets smaller

and smaller

Hole – block of available free
memory.

Holes of various size are scattered
throughout memory.

When a process arrives, it is
allocated memory from a hole large
enough to accommodate it.

Operating system maintains
information about:

‣ Allocated partitions.

‣ Free partitions (holes).

OS

Process 5

Hole

Process 9

Process 10

Hole

Process 2

9.26 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Variable Partition

 Multiple-partition allocation

• Degree of multiprogramming limited by number of partitions

• Variable-partition sizes for efficiency (sized to a given process’ needs)

• Hole – block of available memory; holes of various size are scattered
throughout memory

• When a process arrives, it is allocated memory from a hole large enough to
accommodate it

• Process exiting frees its partition, adjacent free partitions combined

• Operating system maintains information about:
a) allocated partitions b) free partitions (hole)

9.27 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Fragmentation

 External Fragmentation – total memory space exists to satisfy a
request, but it is not contiguous

 Internal Fragmentation – allocated memory may be slightly larger
than requested memory; this size difference is memory internal to a
partition, but not being used

 First fit analysis reveals that given N blocks allocated, 0.5 N blocks
lost to fragmentation

• 1/3 may be unusable -> 50-percent rule

Compaction
Move all processes to one end of the address space producing one large hole at the

other end of the address space.

OS

Process 5

Hole

Process 10

Hole

Process 6

Hole

Process 4

OS

Process 5 internal
fragmentation

Process 10

Process 6

Process 4

Hole

Compaction

When should compaction be done?

This method can be expensive
(takes long time).

Compaction makes a process memory
image move around in the physical
memory during run time.

Solutions to External Fragmentation

 Compaction
 From time to time, the operating system shifts the processes (if

possible) so that they are contiguous and so that all of the free

memory is together in one block.

 Problem: it is a time consuming procedure and wasteful of

processor time

 To permit the logical address space of the processes
to be noncontiguous
 i.e., divide the processes into smaller pieces
 We will see Paging and Segmentation techniques

Placement Algorithms

 Operating system must decide which

free block to allocate to a process

 Algorithms

 First-fit

 Next-fit

 Best-fit

 Worst-fit

 Example

 A new process = 16 MB

24 MB

8 MB

20 MB

6 MB

32 MB

8 MB

45 MB

Last
allocated

block

First - fit

Best - fit

Next - fit

Worst - fitSimulations show that first-fit and best-fit performs better

than worst-fit in terms of speed and storage utilization.

Placement Algorithms

 First-fit
 Scans memory form the beginning and allocate the first hole that is

big enough

 Is not only the simplest but usually the best and fastest as well

 Next-fit
 Begins to scan memory from the location of the last placement and

allocate the next hole that is big enough

 Best-fit
 Allocate the smallest hole that is big enough

 Worst performer overall; produces the smallest leftover hole

 Worst-fit
 Allocate the largest hole

Buddy System

 The buddy system is a reasonable compromise to overcome the
disadvantages of both the fixed and variable partitioning schemes

 Entire space available is treated as a single block of 2U

 If a request of size s where 2U-1 < s <= 2U

 entire block is allocated

 Otherwise block is split into two equal buddies

 Process continues until smallest block greater than or equal to s is

generated

Buddy System

Buddy System

Address Binding

 Logical Address

 Reference to a memory location independent of the current assignment of data

to memory

 A translation must be made to a physical address before the memory access

can be achieved

 Silberschatz: address generated by the CPU

 RelativeAddress

 Is an example of logical address, in which the address expressed as a location

relative to some known point

 Physical or AbsoluteAddress

 The absolute address or actual location in main memory

 Silberschatz: address seen by the memory unit

Addresses

• Reference to a memory location independent of the current
assignment of data to memory

Logical

• A particular example of logical address, in which the address
is expressed as a location relative to some known point

Relative

• Actual location in main memory

Physical or Absolute

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Address Binding

 Addresses in the source program are generally symbolic

 Address binding is the process of mapping the program's logical or

virtual addresses to corresponding physical or main memory addresses.

In other words, a given logical address is mapped by the MMU (Memory

Management Unit) to a physical address.

 The binding of instructions and data to memory addresses can be done at

any step along the way

 Compile time: If you know at compile time where the process will reside in memory,
then absolute code can be generated

 Load time: Compiler generate relative addresses, final binding is delayed until load

time

 Execution time: Binding delayed until run time if the process can be moved
during its execution from one memory segment to another
 Special hardware must be available for this scheme to work

Memory-Management Unit (MMU)

 Hardware device that at run time maps logical to physical address

 MMU in contiguous allocation uses two registers

 Base register (or relocation register)
 Starting address for the process

 Bounds register (or limit register)
 Ending location of the process

 These values are set when the process is loaded

Address Binding

Paged memory management

Source: https://en.wikipedia.org/wiki/Memory_management_(operating_systems)#Partitioned_allocation 2018-02-22

Paged allocation divides the computer's primary memory into fixed-size units

called page frames, and the program's virtual address space into pages of the

same size.

The hardware memory management unit maps pages to frames.

The physical memory can be allocated non-contiguous on a page basis while

the logical address space appears contiguous.

Page Memory Management

 Divide memory into small equal fixed-size chunks called frames

 Size is power of 2, between 512 bytes and 16 Mbytes

 Divide each process into the same size chunks called pages

 To run a program of size N pages, need to find N free frames (no
matter contiguous or not) and load program

 Operating system maintains a page table for each process

 Contains the frame location for each page in the process

Pages

• Chunks of a
process

Frames

• Available
chunks of
memory

Page Memory Management

CPU

Currently
executing process

Physical memory

Page Memory Management

0
1

2

3

4
5

6
7

8
9

10

11

12
13
14

Main memory

0
1
2
3

0
1
2
3

ProcessA
Page table

--
--
--

0
1
2

Process B
Page table

7
8
9

10

0
1
2
3

Process C
Page table

0 13
1 14

Free frame
list4

5
6

11
12

Process D
Page table

0
1
2
3
4

A.0
A.1
A.2

A.3
B.0B.0
B.1B.1
B.2B.2

C.0C.0
C.1C.1
C.2C.2
C.3C.3

D.3D.3
D.4D.4

D.0D.0
D.1D.1
D.2D.2

To address 2m locations,
we need a m bit address.

A =

m bit address

Memory

2m bytes

0

1

2

2m -1

Addressing the memory
To address the memory, how many bits do we need?

Memory

2m bytes
Frame Size (bytes)

0 2n

1 2n

2 2n

[2
(m-n)

] -1 2n

We number the frames 0, 1, ..., [2(m-n)] -1

Frames
Physical memory of size 2m bytes divide into frames of size 2n bytes each.

We number the frames 0, 1, ...

How many frames do we get?

Pick a frame (address translation)
How can we map a logical address as seen by the CPU to a physical frame
in memory?

To address 2m locations, we need a m bit
address.

A =

m bit address

To which of the (m - n) frames should an
address be mapped?

‣ Could map address A to frame A mod (m-
n), i.e., use the (m-n) least significant bits
of address A as frame number.

Memory

2m bytes
Frame Size (bytes)

0 2n

1 2n

2 2n

[2
(m-n)

] -1 2n

m bit logical address seen by the CPU

A =

m - n n

What does the n least significant bits mean?

frame number ???

A =

Use m-n high order bits to pick a frame.

Pick a frame (address translation)
How can we map a logical address as seen by the CPU to a physical frame in

memory?

Memory

2m bytes

Frame Size (bytes)

0 2n

1 2n

2 2n

[2
(m-n)

] -1 2n

Memory

2m bytes
Frame Size (bytes)

0 2n

1 2n

2 2n

f

0

1

2

3

d

2n -1

[2(m-n)] -1 2n

Each frame is 2n

bytes.

We number the
bytes in a frame

0, 1, 2, ..., 2n - 1

frame number frame offset

A = f d
m - n n

Byte d within
frame f.

The n least significant bits denotes

the byte offset within the frame.

Use m-n high order bits to pick a

frame.

Memory

2m bytes
Frame Size (bytes)

0 2n

1 2n

2 2n

f

0

1

2

3

d

2n -1

[2(m-n)] -1 2n

frame number frame offset

A = f d
m - n n

‣ Using this scheme, a logical
address will always be mapped to
the same physical frame.

‣ The physical memory must still be
allocated as a sequence of
contiguous frames.

Pages and frames Memory

2m bytes
Frame Size (bytes)

0 2n

1 2n

2 2n

f
frame

0

1

2

3

d
frame offset

2n -1

[2(m-n)] -1 2n

A solution that allows for non-contiguous allocation of
physical frames.

‣ Logical address space divided into fixed sized pages.

‣ Physical memory divided into frames of the same
fixed size as the pages.

A = p d
m - n

page

number

n

page
offset

Page table
A page lookup table maps logical pages to physical frames.

Page table

Page Frame

0 33

1 7111

127 42

[2(m-n)] -1 5666

Address Translation Scheme

 Logical address generated by CPU is divided into:
 Page number (p) – used as an index into the page table to

obtain the frame number

 Page offset (d) – is the displacement within the page. combined
with the frame number to define the physical memory address

 If the size of logical address space is 2m, and page size is 2n, then
the logical

page number page offset

p d

m - n n

Address Translation Scheme

Address Translation Example

Physical Memory = 32 Byte (m=5)

Page size = 4 Byte (n=2)

Logical address Physical address

0 0 0 0 0 0 20

6 0 0 1 1 0 26

13 0 1 1 0 1 9

1 0 1 0 0

1 1 0 1 0

0 1 0 0 1

Paging Issues

 There is some internal fragmentation

 The last frame allocated may not be completely full

 Page table becomes very large in a large logical address space
(232 to 264)

 Memory access is slowed

 Each memory access require an extra access to the page table
(which is also kept in main memory)

Internal Fragmentation

 The last frame allocated may not be completely full

 Page size = 2,048 bytes

 Process size = 72,766 bytes = 35 pages + 1,086 bytes

 Internal fragmentation of 2,048 - 1,086 = 962 bytes

 On average fragmentation is ½ frame size

 Smaller page size, less amount of internal fragmentation

 But Smaller page size, more pages required per process

 More pages per process means larger page tables

 Pages typically are between 4 KB and 8 KB in size

 Solaris supports two page sizes – 8 KB and 4 MB

Implementation of Page Table

 The page table can be implemented as a set of dedicated registers

 Example: DEC PDP-11, page table consists of 8 entries

 Can be used if the page table is reasonably small

 In modern computers page tables are very large (e.g., 1 million

entries) and are kept in main memory

 Page-table base register (PTBR) points to the page table

 This register is stored in the PCB of the process

Implementation of Page Table

 In this scheme every data/instruction access requires two memory

accesses

 One for the page table and one for the data/instruction

 Thus, memory access is slowed by a factor of 2

 Solution: to use a special, small, fast lookup hardware cache, called a

translation look-aside buffer (TLB)

Translation Look-aside Buffer (TLB)

 The TLB is associative, high-speed memory – parallel search

 Each entry in the TLB consists of two parts: a key (or tag) and a value

 When an item is given to TLB, the item is compared with all keys

simultaneously. If the item is found, the corresponding value field is

returned.

 The hardware is expensive, so TLBs are typically small (64 to

1,024 entries)

Translation Look-aside Buffer (TLB)

 The TLB contains only a few of the page-table entries

 To translate a logical address, its page number is presented to the

TLB

 If page number is found (TLB hit), the frame number is retrieved

 Otherwise (TLB miss), frame number is retrieved from the page table,

and it is also added to the TLB (replacement policies can be used, if the

TLB is full)

Page # Frame #

Translation Look-aside Buffer (TLB)

Translation Look-aside Buffer (TLB)

Effective Access Time using TLB

 Hit ratio

 Percentage of times that a page number is found in the associative

registers

 Example

 hit ratio = 80%, TLB search = 20 ns, memory access = 100 ns

EAT = 0.8  (20 + 100) + 0.2  (20 + 100 + 100) = 140 ns

40% slowdown in memory access time

 If hit ratio increases to 98%

EAT = 0.98  (20 + 100) + 0.02  (20 + 100 + 100) = 122 ns

9.66 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Shared Pages

 Shared code

• One copy of read-only (reentrant) code shared among processes
(i.e., text editors, compilers, window systems)

• Similar to multiple threads sharing the same process space

• Also useful for interprocess communication if sharing of read-write
pages is allowed

 Private code and data

• Each process keeps a separate copy of the code and data

• The pages for the private code and data can appear anywhere in
the logical address space

9.67 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Shared Pages Example

Structure of the Page Table

 Most modern computer systems support a large logical address

space (232 to 264)

 In these environments, the page table becomes excessively large

 Consider a 32-bit logical address space, Page size of 4 KB (212)

 Page table would have 1 million entries (232 / 212 = 220)

 If each entry is 4 bytes, then 4 MB of memory for page table alone

 Solutions

 Hierarchical Paging

 Hashed Page Tables

 Inverted Page Tables

Hierarchical Page Tables

p1 p2 d

 Break up the logical address space into multiple page tables

 A simple technique is a two-level page table

 The page table itself is also paged

 Consider a 32-bit machine, with a page size of 4 KB

 Logical address = 20 bits page number + 12 bits offset

 Because we page the page table, the page number is further diver and

a 10-bit page offs

10 10 12

9.70 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Two-Level Paging Example

 A logical address (on 32-bit machine with 1K page size) is divided into:

• a page number consisting of 22 bits

• a page offset consisting of 10 bits

 Since the page table is paged, the page number is further divided into:

• a 10-bit page number

• a 12-bit page offset

 Thus, a logical address is as follows:

 where p1 is an index into the outer page table, and p2 is the
displacement within the page of the inner page table

 Known as forward-mapped page table

9.71 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Hierarchical Page Tables

 Break up the logical address space into multiple page tables

 A simple technique is a two-level page table

 We then page the page table

p1 p2 d

Hierarchical Page Tables

Important: it is not necessary to keep all the pages of page table in main memory (we will see

this in the next chapter – virtual memory)

Hierarchical Page Tables

 For a 64-bit logical address space, even two-level paging scheme

not sufficient

 If page size is 4 KB, then page table has 252 entries

 With two level scheme

 Inner page tables could be 210 4-byteentries

 Outer page table has 242 entries or 244bytes

 Three-level (32-bit SPARC architecture) or four-level (32-bit Motorola

68030) paging schemes are required

 For 64-bit architectures, hierarchical page tables are generally

considered inappropriate

9.74 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

64-bit Logical Address Space

 Even two-level paging scheme not sufficient

 If page size is 4 KB (212)

• Then page table has 252 entries

• If two level scheme, inner page tables could be 210 4-byte entries

• Address would look like

• Outer page table has 242 entries or 244 bytes

• One solution is to add a 2nd outer page table

• But in the following example the 2nd outer page table is still 234

bytes in size

 And possibly 4 memory access to get to one physical memory
location

9.75 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Three-level Paging Scheme

9.76 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Hashed Page Tables

 Common in address spaces > 32 bits

 The virtual page number is hashed into a page table

• This page table contains a chain of elements hashing to the same
location

 Each element contains (1) the virtual page number (2) the value of the
mapped page frame (3) a pointer to the next element

 Virtual page numbers are compared in this chain searching for a match

• If a match is found, the corresponding physical frame is extracted

 Variation for 64-bit addresses is clustered page tables

• Similar to hashed but each entry refers to several pages (such as 16)
rather than 1

• Especially useful for sparse address spaces (where memory references
are non-contiguous and scattered)

Hashed Page Tables

Inverted Page Table

 Traditional page tables
 Each process has an associated page table

 The page table has one entry for each logical page that the process is

using

 Drawback: each page table may consist of millions of entries, consume

large amount of memory

 Inverted page tables
 Only one page table is in the system
 Has one entry for each real page (or frame) of memory
 Each entry consists of <process id, page number>

 It is called inverted because it indexes page table entries by frame

number rather than by virtual page number.

Inverted Page Table

Inverted Page Table

 Problem

 Search is time consuming

 Solution

 Combine with hash table

Segmented Memory Management

 An important property of paging is separation of the user's view of

memory and the actual physical memory

 Segmentation supports user view of memory

 Users prefer to view memory as a collection of variable-sized

segments

 A segment is a logical unit such as:

 main program, procedure, function, method

 Data structures like objects, arrays stacks, variables,

…

Segmented Memory Management

Segmented Memory Management

 A logical address space is a collection of segments

 Each segment has a name and a length

 The user specifies each address by two quantities: a segment name and

an offset

 For simplicity, segments are numbered
 logical address = <segment number, offset>

 For example, a C compiler might create separate segments for the following:

 The code, global variables, the heap, the stacks used by each thread, and the

standard C library

Address Translation Scheme

 Each process has a segment table

 Each entry in segment table has

 Segment base

 The starting physical address where the segment resides in memory

 Segment limit

 Specifies the length of the segment

 To translate a logical address <s, d>

 s is used as an index to the segment table

 if d is legal, it is added to the segment base to produce physical address

Address Translation Scheme

Address Translation Scheme

Combined Paging and Segmentation

 Both paging and segmentation have their strengths

 Paging is transparent to the programmer, while Segmentation is
visible to the programmer

 In a combined paging/segmentation system

 A user’s address space is broken up into a number of
segments, at the discretion of the programmer.

 Each segment is, in turn, broken up into a number of fixed-size pages

 Example: The Intel Pentium

Combined Paging and Segmentation

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

End of Chapter 9

